
Transfer learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Why use transfer learning?

 Having plenty of unlabeled data and little labeled data is common. Building a

large unlabeled dataset is often cheap (e.g., a simple script can download

millions of images off the internet), but labeling those images (e.g., classifying

them as cute or not) can usually be done reliably only by humans

 Labeling instances is time-consuming and costly: including prepare labeling manuals,

categories, hiring humans, creating GUIs, storage pipelines, etc. so it’s normal to have only

a few thousand human labeled instances

 You may also want to consider crowdsourcing platforms such as Amazon Mechanical Turk

if you have a very large number of images to annotate. However, it is quite a lot of work to

set up a crowdsourcing platform, prepare the form to be sent to the workers, supervise

them, and ensure that the quality of the label they produce is good, so make sure it is worth

the effort

2

https://www.mturk.com/

1. Transfer learning

 It is generally not a good idea to train a very large DNN from scratch: instead,

you should always try to find an existing neural network that accomplishes a

similar task to the one you are trying to tackle, then reuse the lower layers of

this network. This technique is called transfer learning

 It will not only speed up training considerably, but also require significantly less labeled

training data

 Suppose you have access to a DNN that was trained to classify pictures into

100 different categories, including animals, plants, vehicles, and everyday

objects. You now want to train a DNN to classify specific types of vehicles.

These tasks are very similar, even partly overlapping, so you should try to

reuse parts of the first network

3

Transfer learning

 Transfer learning work best when the inputs have similar low-level features

 The output layer of the original model should be replaced because it is most likely not

useful for the new task, and it may not have the right number of outputs for the new task

4

 Similarly, the upper hidden layers of the model

are less likely to be as useful as the lower

layers, since the high-level features that are

most useful for the new task may differ

significantly from the ones that were most

useful for the original task

 If we treat lower layer frozen we can often

speed up training while still obtain good

performance for vision or NLP tasks

 There exist complex variants such as adapter

https://arxiv.org/abs/1902.00751

Transfer learning

 You want to find the right number of layers to reuse

1. Try freezing all the reused layers first, then train your model and see how it performs.

Then try unfreezing one or two of the top hidden layers to let backpropagation tweak

them and see if performance improves

5

2. The more labeled training data you have, the more

layers you can unfreeze. It is also useful to reduce

the learning rate when you unfreeze reused layers

 If you have plenty of training data, you may even try to

add more hidden layers

3. If you still cannot get good performance, and you

have little training data, try dropping the top hidden

layer(s) and freezing all the remaining hidden layers

again. You can iterate until you find the right

number of layers to reuse

2. Using pretrained model – feature extraction

 Feature extraction with a pretrained model is often useful in visual task

 Such portability of learned features across different problems is a key advantage of deep

learning compared to traditional learning approaches and is effective for small-data

problems

6

Using pretrained model – feature extraction

 Convnets start with a series of pooling and convolution layers, and they end

with a densely connected classifier. The first part is called the convolutional

base of the model

 In the case of convnets, feature extraction consists of taking the convolutional base of a

previously trained network, and training a new classifier on top of the output

7

 Note that the level of generality of the

representations extracted by specific convolution

layers depends on the depth of the layer

 Layers that come earlier in the model extract local, highly

generic feature maps (such as visual edges, colors, and

textures), whereas layers that are higher up extract more-

abstract concepts (such as “cat ear” or “dog eye”)

Using pretrained model – fine-tuning

 Another widely used technique for model reuse, complementary to feature

extraction, is fine-tuning

8

 Fine-tuning consists of unfreezing a few of the

top layers of a frozen model base used for

feature extraction, and jointly training both the

newly added fully connected classifier and

these top layers

 When fine-tuning a model that includes

BatchNormalization layers, it is sometimes

recommended leaving these layers frozen

Supervised pre-training

 The pre-training task may be supervised or unsupervised; the main

requirements are that it can teach the model basic structure about the problem

domain and that it is sufficiently similar to the downstream fine-tuning task

 The notion of task similarity is not rigorously defined, but in practice the domain of the

pre-training task is often more broad than that of the fine-tuning task

 For example, it is very common to use the ImageNet dataset to pretrain CNNs, which can

then be used for an a variety of downstream tasks and. Imagenet has 1.28 million natural

images, each associated with a label from one of 1,000 classes. The classes constitute a

wide variety of different concepts, including animals, foods, buildings, musical instruments,

clothing, and so on

 Another non-vision application of transfer learning is to pre-train a speech recognition on a

large English-labeled corpus before fine-tuning on low-resource languages

9

3. Unsupervised pretraining

 In case you want to tackle a complex task for which you don’t have much

labeled data, but unfortunately you can’t find a model trained on a similar task

10

 If you can gather plenty of unlabeled training data, you can try to use it to train an

unsupervised model, such as an autoencoder or a generative adversarial network

 You can then reuse the lower layers of the autoencoder or GAN’s discriminator, add the

output layer for your task on top, and finetune the final network with the labeled training

examples

Unsupervised pretrained

 If you have a large dataset but most of it is unlabeled, you can first train a

stacked autoencoder using all the data

11

 Then reuse the lower layers to create a

neural network for your actual task and

train it using the labeled data, you may

also want to freeze the pretrained layers

 When an autoencoder is neatly

symmetrical, a common technique is to

tie the weights of the decoder layers to

the weights of the encoder layers. This

halves the number of weights in the

model, speeding up training and limiting

the risk of overfitting

Training one autoencoder at a time

 It is possible to train one shallow autoencoder at a time, then stack all of them

into a single stacked autoencoder called “greedy layerwise training”

 During the first phase of training, the first autoencoder learns to reconstruct the inputs.

Then we encode the whole training set using this first autoencoder, and this gives us a new

(compressed) training set. We then train a second autoencoder on this new dataset. This is

the second phase of training

12

 Finally, we build a big sandwich

using all these autoencoders, This

gives us the final stacked

autoencoder

4. Self-supervised learning

 Self-supervised learning is an active research field. Self-supervised learning is

an approach to pre-training models using unlabeled data

 This term is used because the labels are created by the algorithm, rather than being

provided externally by a human, as in standard supervised learning. Both supervised and

self-supervised learning are discriminative tasks, since they require predicting outputs

given inputs

13

Supervised

𝑥

𝑦

label

Model

ො𝑦

𝑥

𝑥′

𝑥′′

Model

Self-

supervised

𝑦

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

Self-supervised learning - Pretrained using imputation tasks

 One approach to self-supervised learning is to solve imputation tasks. In this

approach, we partition the input vector x into two parts, 𝑥 = (𝑥ℎ, 𝑥𝑣), and then

try to predict the hidden part 𝑥ℎ given the remaining visible part, 𝑥𝑣, using a

model of the form ො𝑥ℎ = 𝑓(𝑥ℎ = 0, 𝑥𝑣) . We can think of this as a “fill-in-the-

blank” task; in the NLP community, this is called a cloze task

14

Self-supervised learning - Pretrained using imputation tasks

BERT

中

MASK

Random

(special

token)

山 大 學

Transformer

Encoder

Linear

0.1

0.7

0.1

0.1

…… ……

(all characters)

=

=

or

Randomly masking some tokens

softmax

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

Add noise

Encoding

Decoder

Embedding

Reconstruction For more information see here

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx
https://d2l.ai/chapter_natural-language-processing-pretraining/word2vec-pretraining.html

Self-supervised learning - contrastive tasks

 Solve proxy tasks, also called pretext tasks

 The basic idea is to create pairs of examples that are semantically similar to each other,

using data augmentation methods

 Train a self-supervised model to learn data representations by contrasting multiple

augmented views of the same example. These learned representations capture data

invariants, e.g., object translation, color jitter, noise, etc

16

https://arxiv.org/abs/2011.00362

https://arxiv.org/abs/2011.00362

Self-supervised learning - contrastive tasks

 Color Transformation

 Geometric Transformation

 Jigsaw puzzle

17

Self-supervised learning - contrastive tasks

 Pretext tasks are self-supervised tasks that act as an important strategy to learn

representations of the data using pseudo labels

 These pseudo labels are generated automatically based on the attributes found in the data

 The original image acts as an anchor, its augmented version acts as a positive sample, and

the rest of the images in the batch or in the training data act as negative samples

18 https://arxiv.org/abs/2011.00362

https://arxiv.org/abs/2011.00362

Self-supervised learning

 Identifying the right pre-text task

 The choice of pretext task relies on the type of problem being solved

 The main aim of a pre-text task is to compel the model to be invariant to these

transformations while remaining discriminative to other data points

 For instance, colorization-based pretext tasks might not work out in a fine-grain

classification represented in figure

19

Semi-supervised learning

 Semi-supervised learning can alleviate the need for labeled data by taking

advantage of unlabeled data

 The general goal of semi-supervised learning is to allow the model to learn the high-level

structure of the data distribution from unlabeled data and only rely on the labeled data for

learning the fine-grained details of a given task

 Whereas in standard supervised learning we assume that we have access to samples from

the joint distribution of data and labels 𝑥, 𝑦~𝑝(𝑥, 𝑦), semi-supervised learning assumes

that we additionally have access to samples from the marginal distribution of 𝑥~𝑝(𝑥)

20

Semi-supervised learning: self-training and pseudo-labeling

 A straightforward approach to semi-supervised learning is self-training

 The basic idea behind self-training is to use the model itself to infer predictions on

unlabeled data, and then treat these predictions as labels for subsequent training

 Recently, it has become common to refer to this approach as “pseudo-labeling” because the

inferred labels for unlabeled data are only “pseudo-correct” in comparison with the true,

ground-truth targets used in supervised learning

 A common strategy is to use a “selection metric” which tries to only retain pseudo-labels

that are correct. For example, assuming that a model outputs probabilities for each possible

class, a frequently-used selection metric is to only retain pseudo-labels whose largest class

probability is above a threshold

 Also refer to noisy student approach, some recent paper advocate self-training approach

rather than supervised or self-supervised way, see here

21

https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/2006.06882

Downstream task – computer vision

 Downstream tasks are application-specific tasks that utilize the knowledge that

was learned during the imputation/contrastive task

22

 Training a classifier on top of the frozen

representations is easier and requires fewer

labels because the pre-trained model

already produces meaningful and generally

useful features

 The learned parameters serve as a

pretrained model and are transferred to

other downstream computer vision tasks by

fine-tuning

 The encoder can then be used to produce

embedding or latent space

https://beta.openai.com/docs/guides/embeddings

• Masked token prediction

BERT
Self-supervised

Learning

Model for

text classification

Downstream Tasks

Model for

sentiment analysis

Model for

translation

• The tasks we care

• We have a little bit labeled data.

Fine-tune

Pre-train

Downstream task - NLP

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx
24

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

5. Domain adaptation

24

The results are from: http://proceedings.mlr.press/v37/ganin15.pdf

Domain shift: Training and testing data have different

distributions.

99.5% 57.5%

Training

Data

(Source domain)

Testing

Data

Domain

adaptation

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/da_v6.pptx

Target domain

http://proceedings.mlr.press/v37/ganin15.pdf
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/da_v6.pptx

Domain adaptation

25

Source Domain

(with labeled data)

“4” “0” “1”
Knowledge of target domain

“8”

Little but

labeled

 Idea: training a model by

source data, then fine-

tune the model by target

data

 Challenge: only limited

target data, so be careful

about overfitting

Large amount of

unlabeled data

Domain adaptation

26

The same

distribution

feature

feature

Feature

Extractor

(network)

Feature

Extractor

(network)

Source

Target

Learn to ignore colors

Different

Domain adversarial training

27

Feature

Extractor

image class distribution

blue points

red points

Source

(labeled)

Target

(unlabeled)

“4”
Label

Predictor

Domain adversarial training

28

Feature

Extractor

Label

Predictor
“4”

Domain

Classifier

Source?

Target?

Discriminator

Generator

 Feature extractor: Learn to

“fool” domain classifier

always zero?

 Also need to support label

predictor

𝜃𝑝

𝜃𝑑

𝜃𝑓

𝐿

𝐿𝑑

𝜃𝑝
∗ = min

𝜃𝑝
𝐿

𝜃𝑑
∗ = min

𝜃𝑑
𝐿𝑑

𝜃𝑓
∗ = min

𝜃𝑓
𝐿 − 𝐿𝑑

Domain adversarial training

29

Conclusion

 Many ML models, especially neural networks, often have many more

parameters than we have labeled training examples

 Of course these parameters are highly correlated, so they are not independent “degrees of

freedom”. Nevertheless, such big models are slow to train and, more importantly, they may

easily overfit. This is particularly a problem when you do not have a large labeled training

set

 Pretraining using supervised, unsupervised or self-supervised way can greatly

benefit the downstream tasks by transferring knowledge from one task to

another

 In some cases, domains might be even different in training and testing phases

 Our goal is to fit the model on the source domain, and then modify its parameters so it

works on the target domain. This is called (unsupervised) domain adaptation

30

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Chapter 11,14

[2] Deep learning with Python, 2nd Edition Chapter 8

[3] https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php Lecture 7 and Lecture 11

[4] A Survey on Contrastive Self-supervised Learning

31

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
https://arxiv.org/abs/2011.00362

Appendix

32

Resources

 Model repositories

 https://www.tensorflow.org/hub

 Tutorial on transfer learning

 https://www.tensorflow.org/tutorials/images/transfer_learning

 Tutorials on other related topics

 https://d2l.ai/chapter_natural-language-processing-pretraining/index.html (Pretrained for

NLP)

 https://github.com/koshian2/Pseudo-Label-Keras (Pseudo labeling)

 Multi-Task Learning

 Zero-Shot Learning

 A Survey on Contrastive Self-supervised Learning

 Curriculum Learning

33

https://www.tensorflow.org/hub
https://www.tensorflow.org/tutorials/images/transfer_learning
https://d2l.ai/chapter_natural-language-processing-pretraining/index.html
https://github.com/koshian2/Pseudo-Label-Keras
https://arxiv.org/abs/2009.09796
https://arxiv.org/pdf/1707.00600
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2011.00362

Active learning

 In active learning, the goal is to identify the true predictive mapping 𝑦 =
𝑓(𝑥) by querying as few (𝑥, 𝑦) points as possible

 There are various closely related problems. In Bayesian optimization the goal is to estimate

the location of the global optimum ො𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓(𝑥) in as few queries as possible;

typically we fit a surrogate (response surface) model to the intermediate (𝑥, 𝑦) queries, to

decide which question to ask next

 In experiment design, the goal is to infer a parameter vector of some model, using carefully

chosen data samples 𝐷 = {𝑥1, … , 𝑥𝑁}, i.e. we want to estimate 𝑝(𝜃|𝐷) using as little data

as possible

34

Weakly unsupervised learning

 The term weakly supervised learning refers to scenarios where we do not have

an exact label associated with every feature vector in the training set

 One scenario is when we have a distribution over labels for each case, rather than a single

label. Fortunately, we can still do maximum likelihood training: we just have to minimize

the cross entropy,

 Where 𝑝(𝑦|𝑥𝑛) is the label distribution for case n, and 𝑞𝜃(𝑦|𝑥𝑛) is the predicted

distribution. Indeed, it is often useful to artificially replace exact labels with a “soft”

version, in which we replace the delta function with a distribution that puts, say, 90% of its

mass on the observed label, and spreads the remaining mass uniformly over the other

choices. This is called label smoothing, and is a useful form of regularization

35

https://pyimagesearch.com/2019/12/30/label-smoothing-with-keras-tensorflow-and-deep-learning/

What is Self-Supervised Learning?

 A version of unsupervised learning where data provides the supervision.

 In general, withhold some part of the data and the task a neural network to

predict it from the remaining parts.

 Goal: Learning to represent the world before learning tasks.

36

Taxonomy of Transfer learning

37

T
ar

g
et

 D
at

a

Source Data (not directly related to the task)

labelled

la
b
el

le
d

unlabeled

u
n
la

b
el

ed

Multitask Learning

Fine-tuning

Self-taught learning

Self-supervised learning

Domain-adversarial

training

Zero-shot learning

Self-taught Clustering

“Transfer learning from unlabeled data”,

ICML, 2007

“Self-taught clustering”,

ICML 2008

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/transfer.pptx

Few-shot learning

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/transfer.pptx

